Academy

Calculation Policy to Mathematics Curriculum: September 2020
(Adapted from White Rose Maths Hub)
Rationale: Our aim is to provide our learners with the mathematical skills and knowledge to be able to reason and problem solve effectively. Across the school crossover of strategies across year groups will occur as skills develop and understanding deepens. Some arithmetic strategies are year group specific whilst this policy also allows for increase in pace of learning where appropriate. The most early arithmetic strategies seen earlier in the school still hold weight as the children move through the national curriculum; developing understanding of number requires children to move between concrete, pictorial and abstract representations.

	Combining objects to show how the can be joined to make a larger number. Part+Part=Whole.		Part+Part=Whole Whole=Part+Part
Starting at the bigger number and counting on Vocab: Number, larger, smaller, count, jump, greatest, least, biggest, smallest	Starting with the larger number and counting on the smaller number, one by one.	$12+5=17$ Starting the with the larger number and counting on the smaller number, with ones or larger groups.	$5+12=17$ Hold the larger number in your head, counting on the smaller number.
Regrouping to make 10. Vocab: Ten, ones, part, whole, more, above, bigger, greatest, least, biggest, smallest	$6+5=11$		$7+4=11$ Mentally, starting with the larger number add on the smaller number (in this instance, 4.) Add the 3 to make 10 then the remaining 1.

			Calculations $\begin{array}{r} 21+42= \\ 21 \\ +\underline{42} \end{array}$ Start with the ones, and then the tens, total each column but ensure that children aware that the 2 in 21 represents twenty.
Column methodregrouping (Y2+) Vocab: exchange, total, altogether ones, tens, hundreds, thousands, tens of thousands, hundreds of thousands, millions, tens of millions, tenths, hundredths, thousandths, total, remaining (left over), place holder, decimal, represent, carry, greatest, least, biggest, smallest	 Place the counters onto a place value grid. Start by adding the ones, tens then hundreds. In this case 6+7=13. Exchange 10 of the ones for a ten leaving 3 remaining. Using place value counters, or sticks of diennes set out on pre-drawn place value grids. Works with money and decimals and other units.	$38+13$ Start with drawing 105 and ones. Add the ones then tens.	Each child must know the value of each digit and what each number represents. As a start point before the column method is used, the columnar method is used to demonstrate the composition of numbers. Teachers move onto the column method once children know the value of each digit in their calculation. $\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$

(2)

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones Vocab: Take away, subtract, minus, less than, difference, jump, tens, ones, greatest, least	Use physical objects, counters, cubes etc to show how objects can be physically taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. If subtracting a 2 digit number, subtract the tens then the ones.	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$ Hold a number in your head and count back in ones. Use fingers to support mental calculation.

Find the difference Vocab: Take away, subtract, minus, less than, fewer than, more than, greater than, difference, jump, tens, ones, bigger, smaller, biggest, smallest greatest, least	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches. Hold numbers mentally, count on from 15 to 23, or back 15 from 23.
Part Part Whole Model Vocab: Whole, Part, Take away, subtract, minus, less than, fewer than, more than, greater	Pre-drawn part part whole. Link to additionuse the part whole model to help explain the inverse between addition and subtraction.	Draw out part part whole: use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.

than, difference, jump, tens, ones, bigger, smaller, biggest, smallest greatest, least	If 10 is the whole and 6 is one of the parts. What is the other part? We know that $6+4$ and $4+6=10$. $10-6=$		
Make 10 Vocab: Take away, subtract, minus, less than, fewer than, more than, greater than, difference, jump, tens, ones, bigger, smaller, biggest, smallest greatest, least	Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Draw a number line. Start at 13 . Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ Upwards from 8 to 16: how many do we take off to reach the next $10=2$. Then add the remaining 6 to get to 16 . $6+2=16 .$ Backwards from 16. Take 6 to get to 10 , then the remaining 2 to get to 8 .
Column method without regrouping (y2+) Vocab: Take away, subtract, minus, less than, fewer than, more than, greater than, difference, jump, thousands, hundreds, tens, ones, bigger, smaller, biggest, smallest, partition, greatest, least, tens of thousands, hundreds	Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract. Again	34-21 Draw bigger number with sticks of 10 and ones. Subtract ones then tens leaving you with 13.	$\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ As a start point before the column method is used, the columnar method is used to demonstrate the composition of numbers. Teachers move onto the column method once children know the value of each digit in their calculation.

of thousands, millions, tens of millions, tenths, hundredths, thousandths,		Draw the Base 10 or place value counters alongside the written calculation to help to show working. Cross off the numbers as you go.	This will lead to a clear written column subtraction. Children must have clear understanding of the place value of each digit.
Column method with regrouping (Y2+) Vocab: Take away, subtract, minus, less than, fewer than, more than, greater than, difference, jump, thousands, hundreds, tens, ones, bigger, smaller, least, biggest, greatest smallest, partition, exchange, decimals, place holder, tens of thousands, hundreds of thousands, millions, tens of millions, tenths, hundredths, thousandths,	Use Base 10/place value counters. to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones. Now I can subtract my ones.	Sticks of 10 and one. 32-17 1) Draw sticks of 10/ones (32) 2)Only 2 ones, so exchange a ten for 10 ones. Then subtract 7 3) Subtract the ten. 4) You are left with one ten and 5 ones=15.	Children can start their formal written method by partitioning the number into clear place value columns. Each child must know the value of each digit and what each number represents. As a start point before the column method is used, the columnar method is used to demonstrate the composition of numbers. Teachers move onto the column method once children know the value of each digit in their calculation.

Multiplication

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Doubling \\
Vocab： \\
Double，half，multiply by 2， 2 times， 2 groups of， 2 lots of，combine， total．
\end{tabular} \& \begin{tabular}{l}
Use cubes or counters etc to show how to double a number． \\
double 4 is 8
\[
4 \times 2=8
\]
\end{tabular} \& \begin{tabular}{l}
Draw pictures to show how to double a number． \\
Double 4 is 8

\square
\square
\square
\square
\square
\end{tabular} \& Partition a number and then double each part before recombining it back together． Hold numbers in head．

\hline | Counting in multiples／ repeated addition |
| :--- |
| Vocab： |
| Multiple，groups of， lots of，count on，add， jumps of，pattern | \& | 由田田 |
| :--- |
| $3+3+3$ |
| Count in multiples supported by concrete objects in equal groups． | \& | |
| :--- |
| Use a number line or pictures to continue support in counting in multiples． $5+5+5=15$ | \& | Write number sentences to show |
| :--- |
| repeated addition． |
| Count in multiples of a number aloud．Memorise patterns and sequences． |
| Write sequences with multiples of numbers． |
| 2，4，6，8， 10 |
| $2 \times 5=10$ or $5 \times 2=10$ |
| 5，10，15，20， 25,30 |
| Link directly to times tables facts－see above． |
| Nth term： |
| N： $\begin{array}{llllll}1 & 2 & 3 & 4 & 5\end{array}$ |
| $\begin{array}{llll}3 & 711 & 15 & 19\end{array}$ |
| Going in 4s． $1 \times 4=4 \quad-1=3$ 4n－1 |

\hline
\end{tabular}

Multiplying Fractions (Y6) Vocab: Denominator, numerator, convert, mixed number, improper fraction, product, multiply, times.	$\frac{3}{4} \times \frac{1}{6}=\frac{3}{24}$ \square Two Fractions Example : Simply multiply top number and bottom numbers	$\begin{aligned} & 2 \frac{3}{4} x- \\ & \frac{11}{4} x- \end{aligned}$	$=\frac{11}{24}$		
Multiplying Decimals (Y6) Vocab: Decmal, decimal place, product, multiply, times.	$0.3 \times 4$$3 \times 4=12$$=1.2$$0.01 \times 4$ $7 \times 4=28$ $=0.2 \underline{8}$ Example 1 Underline the one number after decimal. Multiply the numbers you can see 3×4. Ensure one decimal place in your answer. Underline two numbers after decimal Multiply the numbers you \quad can see 7×4.	$\begin{aligned} & \text { Example 3 } \\ & \text { Underline the one number } \\ & \text { after decimal. } \\ & \text { 6x4=24, so } 6 \times 40=240 \text {. } \\ & \text { Ensure one decimal place } \\ & \text { in your answer. } \\ & 24.0 \text { or just } 24 \text {. } \end{aligned}$	$\begin{aligned} & \text { Example 4 } \\ & \text { Underline the two numbers } \\ & \text { after decimal. } \\ & \text { Multiply the numbers you } \\ & \text { can see } 5 \times 4 \text {. } \\ & \text { Ensure two decimal place } \\ & \text { your answer. Place holder } \\ & \text { before zero. } \end{aligned}$		

Division

Objective and Strategies	Concrete	Pictorial	Abstract

Sharing objects into groups

Vocab:

Share, divide, part, whole, fair, groups of, lots of, inverse, divisor, factor, multiple

Division as	
grouping	

to aid understanding.

| $\bullet \bullet \bullet \bullet \bullet \mid \bullet \bullet \bullet \bullet \bullet$ | $\bullet \bullet \bullet \bullet \bullet$ |
| :--- | :--- | :--- | :--- | :--- |

 $96 \div 3=32$
Physically divide quantities into equal groups.Use cubes, counters, objects or place value counters
Share, divide, part, whole, fair, groups of, lots of, inverse, divisor, factor, multiple

I have 10 cubes, can you share them equally in 2 groups? Physically move the objects to share equally.

Children use pictures or shapes to share quantities.

$$
8 \div 2=4
$$

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

Share 9 buns between three people. Knowing that $3 \times 3=9$.

$$
9 \div 3=3
$$

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group? Count in sevens to 28 , realising there are 4 sevens that make 28 .

$$
20 \div 5=?
$$

$$
5 \times ?=20
$$

Division within arrays Vocab:			Find the inverse of multiplication and division sentences by creating four linking number sentences.
Array, groups of, lots			
of, columns, rows, commutativity, commutative, inverse,	Link division to multiplication by creating an array and thinking about the number sentences that can be created.		$\begin{aligned} & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
	$\begin{array}{rl} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Extend with associated facts: e.g. $70 \times 4=280$.
Division with a remainder Vocab:	$14 \div 3=$ Divide objects between groups and see how much is left over		Complete written divisions and show the remainder using r.
Share, divide, part, whole, fair, groups of, lots of, inverse, remainder, divisor, factor, multiple		Draw groups of or jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Express the remainder as a fraction 5 over 8.5 were left, 8 was the number dividing by.

Other/Cross-over

Progression Across Year Groups

	Typical Calculations			
Year Group	Addition	Subtraction	Multiplication	Division
1	$\begin{gathered} \mathrm{O}+\mathrm{O} \\ \text { TO+O (up to } 20 \text { including } \\ \text { zero) } \end{gathered}$	TO-O (up to 20 including zero)	OxO	$\begin{aligned} & \mathrm{O} \div \mathrm{O} \\ & \mathrm{TO} \div \mathrm{O} \end{aligned}$
2	$\begin{gathered} \text { TO+O } \\ \text { TO }+ \text { multiples of } 10 \\ \text { TO+TO } \\ \mathrm{O}+\mathrm{O}+\mathrm{O} \\ \hline \end{gathered}$	TO-O TO - multiples of 10 TO-TO O-O-O	OxO	$\begin{gathered} \mathrm{O} \div \mathrm{O} \\ \mathrm{TO} \div \mathrm{O} \end{gathered}$
3	$\begin{gathered} \text { HTO+O } \\ \text { HTO+TO } \\ \text { HTO+HTO } \end{gathered}$	$\begin{aligned} & \text { HTO-O } \\ & \text { HTO-TO } \\ & \text { HTO-HTO } \end{aligned}$	TOxO	TO $\div 0$
4	$\begin{aligned} & \text { THTO+HTO } \\ & \text { THTO+THTO } \end{aligned}$	$\begin{aligned} & \text { THTO-HTO } \\ & \text { THTO-THTO } \end{aligned}$	$\begin{aligned} & \text { TOXO } \\ & \text { HTOxO } \end{aligned}$	$\mathrm{TO} \div \mathrm{O}$ $\mathrm{HTO} \div \mathrm{O}$ Remainders expressed with R
5	THTO. + +THTO. \dagger THTO.th+THTO.th Increasing to 5 or 6 digits	THTO.t-THTO.t THTO.th-THTO.th Increasing to 5 or 6 digits	HTOxO THTOXO TOxTO	HTO $\div \mathrm{O}$ THTO $\div \mathrm{O}$ Remainders expressed as a fraction
6	THTO.tht+THTO.tht Increasing to ten million	THTO.tht-THTO.tht Increasing to ten million	THTOXO TOxTO HTOxTO thtoxto O.txO O.thxO O.txTO O.thxTO	$\begin{gathered} \text { THTO } \div \mathrm{O} \\ \text { HTO } \div \mathrm{TO} \\ \text { THTO } \div \mathrm{TO} \\ \mathrm{O} . \mathrm{th} \div \mathrm{O} \\ \text { TO.th } \div \mathrm{O} \\ \text { HTO.th } \div \mathrm{O} \\ \text { THTO.th } \div \mathrm{O} \end{gathered}$

Application of skills	How?
$\begin{array}{c}\text { Question stems }\end{array}$	$\begin{array}{c}\text { Odd one out, true or false, explain..., prove it, what is the same and } \\ \text { what is different, are you sure, mark my work. These develop and } \\ \text { further calculation skills to ensure reasoning skills are developed. }\end{array}$
Estimation of the calculations	$\begin{array}{c}\text { Using knowledge of number and the number system, rounding and } \\ \text { approximating. Teachers to tease this information from children as a } \\ \text { prompt. }\end{array}$
Inverse and missing box questions	$\begin{array}{c}\text { Using knowledge of calculations and the link between multiplication } \\ \text { and division, addition and subtraction, work using the commutative } \\ \text { method e.g. starting with an answer or missing information. }\end{array}$
important is vary the position of the answer box within the calculation	
so the children become used to this.	

