

Sandy Hill Academy Teaching and Learning Principles Subject: Mathematics

Mission Statement:

'Aspiring to achieve, determined to succeed'

Vision:

The mathematics curriculum at Sandy Hill has been designed to ensure that children possess the skills and knowledge that will affect them positively in their lives. Concepts are taught in blocks and have been carefully sequenced to enable learners to make connections. At the heart of the curriculum, driven throughout each academic year, will be fundamental fluency/arithmetic skills.

We aim to:

- Ensure that every child possesses key fluency skills through deep practice, rigorous assessment and intervention
- Further develop concrete, pictorial and abstract understanding
- Instil confidence in every child to reason with precise mathematical vocabulary
- Provide all pupils opportunities to deepen their understanding through applying their skills to problem-solving activities and making real-life links
- Seek opportunities to be mathematical across the wider curriculum
- Celebrate mistakes in order to enhance resilience and self-motivation leading to greater well-being in every child

Mathematics Expectations (National Curriculum 2014):

The National Curriculum for Mathematics aims to ensure that all pupils:

- Become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- Reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- Can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects. The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

<u>EYFS</u>

Mathematics involves providing children with opportunities to develop and improve their skills in counting, understanding and using numbers, calculating simple addition and subtraction problems; and to describe shapes, spaces, and measure.

In the EYFS, Mathematics is broken down into two areas:

- Number
- Shape, Space and Measures

Number: children count reliably with numbers from 1 to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Shape, Space and Measures: children use everyday language to talk about size, weight, capacity, position, distance, time and money to compare quantities and objects and to solve problems. They recognise, create and describe patterns. They explore characteristics of everyday objects and shapes and use mathematical language to describe them.

(Statutory Framework for the Early Years, 2017)

EYFS Curriculum Design

In our Nursery and Reception classes, aspects of Mathematics are taught on a daily basis through: whole class/small group teaching, continuous provision areas and outdoor activities. Children have lots of opportunities to hear, discuss and explore mathematics- adults reflect upon learners' requirements, interests and the ways they learn best, to support effective planning and provision.

We use Tapestry, our online learning journal, to record and track children's progress and achievements in Mathematics against the Early Learning Goals. Children who need additional support are identified and interventions are put in to place when appropriate.

Children's progress within Mathematics is reported to parents through: settling in meetings, sharing learning journals and regular communication. In line with statutory requirements children are assessed against the Early Learning Goals for Mathematics at the end of the Reception year and this is reported to the LA and parents.

Area	Early Learning Goal (2)	Exceeding (3)
Numbers	Children count reliably with numbers from one to 20, place them in order and say which number is one more or one less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.	Children estimate a number of objects and check quantities by counting up to 20. They solve practical problems that involve combining groups of 2, 5 or 10, or sharing into equal groups.
Shape, Space and Measures	Children use everyday language to talk about size, weight, capacity, position, distance, time and money to compare quantities and objects and to solve problems. They recognise, create and describe patterns. They explore characteristics of everyday objects and shapes and use mathematical language to describe them.	Children estimate, measure, weigh and compare and order objects and talk about properties, position and time.

KS1 and KS2 Curriculum Design

The mathematics curriculum at Sandy Hill has been designed to achieve the aims set out in this document and ensure as a school we realise our vision. Throughout each year (KS1 and KS2), key fluency skills will be revisited daily to ensure skills in each child are solidified. (See curriculum overview and curriculum maps for detail of these skills.)

The KS1 curriculum has been blocked to ensure elements follow on logically – for example covering multiplication and division first to enable this to be applied to the next unit (fractions). Despite the curriculum being blocked, some mathematical concepts (e.g. shape) are revisited to ensure that understanding is consolidated and built upon. Key fluency skills from the children's current and previous year are mapped out and revisited daily to ensure a solid foundation of number understanding is maintained and engrained in the children's long-term memory. Around the time of the KS1 SATs in Year 2, skills are revised. Following SATS, units/concepts are recapped to ensure this solid base of understanding before the children move seamlessly onto the KS2 programme of study.

The KS2 curriculum has been blocked to ensure elements follow on logically. Units are longer than in KS1 and less units will occur per half-term. Instead of revisiting units like in KS1, teachers will plan to build elements of previously taught learning into new concepts to allow children to continue to apply skills so they are remembered and built upon. Key fluency and arithmetic skills (which are mapped out) continue to be taught in each year group, building on prior knowledge.

Finally, the curriculum follows a similar pattern in each year group (where possible). This enables continuity and progression for learners, CPD for staff and pedagogical and professional discussion. This reflection around different mathematical concepts leads to continually improving the mathematical experience for learners.

<u>Planning</u>

As a school we use a range of resources to support effective planning of Mathematics. We use curriculum overviews and curriculum maps to ensure comprehensive coverage of the curriculum.

Within planning, learning objectives are matched to the National Curriculum. Marking ladders are used within lessons to enable learners to progress within a Mathematical concept. Associated vocabulary is also included on marking ladders to support learners in reasoning with precision.

A typical lesson within KS1 and KS2 at Sandy Hill would look like this:

Warm Up	Whole Class Teaching	Independent Activities	GDS All
 Warm Up Learners prepare their minds for mathematics with a burst of fluency These warm ups can be in the form of many things e.g.: a quiz, game, repetitive exercise, open-ended question or skill recap A challenge question is provided for children to deepen their understanding. Sometimes, this is an active-warm up where learners complete, 5, 10 or 15 minute physical activities (30:30) alongside their practising of fluency skills e.g. squat you know, hoop games. 	 Whole Class Teaching Learning objective is shared by the teacher with learners. Vocabulary is shared and opportunities to address knowledge gaps given. I do, we do, you do – metacognition modelling is provided for the children Children are given opportunity to reason about the learning they have just acquired. Challenge questions are provided for children to deepen their understanding throughout whole class teaching 	Children practise their skills they have just acquired. Fluency activities can be varied conceptually (images used) or procedurally (e.g. missing numbers) however sometimes it may be appropriate to solidify understanding in one way before further variation Challenges move forward coherently in small steps, allowing children to link their understanding. Reasoning and problem solving activities can be built into any stage of the independent activity.	GDS All All children are given opportunity to apply their mathematical understanding to a question/activity or situation that requires deeper application of that concept. This can be done through whole class discussion, small group, paired work or independently.
		Mistakes are celebrated.	

Skills Progression:

At Sandy Hill, we use the objectives from the National Curriculum to ensure good coverage and challenge for all. We carefully track the objectives to ensure that new learning builds on prior knowledge and consolidates understanding showing sound progression across the depth and breadth of the subject. We have created our own curriculum maps that incorporate the new non-statutory guidance for teaching mathematics. Alongside this, teachers use our calculation policy to ensure progression in calculations.

Within lessons and topics, we ensure sufficient time is given to recall prior learning so that children are able to see and develop links within their learning. One objective may last for a series of lessons whilst the children deepen and consolidate their understanding.

Contextual example or Curriculum map

Subject Progression

Mathematics – Year 6

Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Addition/Subtraction	Percentages	Continuation of previously	Continuation of previously	Continuation of previously	Continuation of previously
BIDMAS	Add/Take Fractions	learned skills	learned skills	learned skills	learned skills
Multiplication/Division					
Multiply/Divide Fractions	Continuation of previously	Understand the relationship	Understand the relationship	Understand the relationship	Full range of RTPC – including Y7
Multiplying decimals	learned skills	between powers of 10 from 1	between powers of 10 from 1	between powers of 10 from 1	
		hundredth to 10 million, and use	hundredth to 10 million, and use	hundredth to 10 million, and use	12x12 Tables
Recognise the place value of each	Recognise when fractions can be	this to make a given number 10,	this to make a given number 10,	this to make a given number 10,	Multiplying decimals
digit in numbers up to 10 million,	simplified, and use common	100, 1,000, 1 tenth, 1 hundredth or	100, 1,000, 1 tenth, 1 hundredth or	100, 1,000, 1 tenth, 1 hundredth or	Add/Subtract mentally (Y5)
including decimal fractions, and	factors to simplify fractions	1 thousandth times the size	1 thousandth times the size	1 thousandth times the size	
compose and decompose numbers		(multiply and divide by 10, 100 and	(multiply and divide by 10, 100 and	(multiply and divide by 10, 100 and	
up to 10 million using standard	Express fractions in a common	1,000)	1,000)	1,000)	
and nonstandard partitioning.	denomination and use this to				
	compare fractions that are similar	Recognise when fractions can be	Recognise when fractions can be	Recognise when fractions can be	
Reason about the location of any	in value.	simplified, and use common factors	simplified, and use common factors	simplified, and use common factors	
number up to 10 million, including		to simplify fractions	to simplify fractions	to simplify fractions	
decimal fractions, in the linear	Compare fractions with different				
number system, and round	denominators, including fractions	Express fractions in a common	Express fractions in a common	Express fractions in a common	
numbers, as appropriate, including	greater than 1, using reasoning,	denomination and use this to	denomination and use this to	denomination and use this to	
in contexts.	and choose between reasoning	compare fractions that are similar	compare fractions that are similar	compare fractions that are similar	
	and common denomination as a	in value.	in value.	in value.	
Understand the relationship	comparison strategy				
between powers of 10 from 1		Compare fractions with different	Compare fractions with different	Compare fractions with different	
hundredth to 10 million, and use	Understand that 2 numbers can be	denominators, including fractions	denominators, including fractions	denominators, including fractions	
this to make a given number 10,	related additively or	greater than 1, using reasoning,	greater than 1, using reasoning,	greater than 1, using reasoning,	
100, 1,000, 1 tenth, 1 hundredth or	multiplicatively, and quantify	and choose between reasoning	and choose between reasoning	and choose between reasoning	
1 thousandth times the size	additive and multiplicative	and common denomination as a	and common denomination as a	and common denomination as a	
(multiply and divide by 10, 100 and	relationships (multiplicative	comparison strategy	comparison strategy	comparison strategy	
1,000)	relationships restricted to				
	multiplication by a whole number).	Understand that 2 numbers can be	12x12 Tables	12x12 Tables	
12x12 Tables		related additively or	Multiplying decimals	Multiplying decimals	
Add/Subtract mentally (Y5)	12x12 Tables	multiplicatively, and quantify	Add/Subtract mentally (Y5)	Add/Subtract mentally (Y5)	
Mixed numbers to improper	Add/Subtract mentally (Y5)	additive and multiplicative	Square and Cubed numbers		
fractions	Mixed numbers to improper	relationships (multiplicative	Prime Numbers		
Multiplying decimals	fractions	relationships restricted to	Factors		
	Multiplying decimals	multiplication by a whole number).			
	Sauare and Cubed numbers				
	Prime Numbers	12x12 Tables			
	Factors	Multiplying decimals			
		Add/Subtract mentally (Y5)			
		Sauare and Cubed numbers			
		Prime Numbers			
		Factors			
		1 GOTOTA		1	

Place Value (2 weeks)	Fractions (4 weeks)	Decimals and	Perimeter, Area and	Algebra (2 weeks)
		Percentages (2 week)	Volume (3 weeks)	
Recognise the place value of each	Recognise when fractions can be	· · · · · · · · · · · · · · · · · · ·		To use simple formulae
digit in numbers up to 10 million,	simplified, and use common	To associate a fraction with division	To recognise that shapes with the	
including decimal fractions, and	factors to simplify fractions	and calculate decimal fraction	same areas can have different	To express missing number
compose and decompose numbers		equivalents for a simple fraction.	perimeters and vice versa	problems algebraically
up to 10 million using standard	Express fractions in a common	equivalents for a simple fraction.	permeters and vice versa	
and nonstandard partitioning.	denomination and use this to	To recall and use equivalences	To recognise when it is possible to	To generate and describe linea
	compare fractions that are similar	between simple fractions, decimals	use formulae for area and volume	number sequences
Reason about the location of any	in value.	and percentages, including in	of shapes.	-
number up to 10 million, including		different contexts.	of shapes.	Solve problems with 2 unknow
decimal fractions, in the linear	Compare fractions with different	uncrent contexts.		
number system, and round	denominators, including fractions	To multiply one-digit numbers with	Ratio and Proportion (2	To enumerate possibilities of
numbers, as appropriate, including	greater than 1, using reasoning,	up to 2 decimal places by whole	weeks)	combinations of 2 variables.
in contexts.	and choose between reasoning	numbers		
	and common denomination as a	numbers	Solve problems involving ratio	Revision of units (4
Understand the relationship	comparison strategy	To use written division methods in	solve problems involving ratio relationships	
between powers of 10 from 1		cases where the answer has up to 2	relationships	weeks)
hundredth to 10 million, and use	To add and subtract fractions with	decimal places	To ask a solution involving similar	
this to make a given number 10,	different denominators and mixed	decimal places	To solve problems involving similar shapes where the scale factor is	
100, 1,000, 1 tenth, 1 hundredth or	numbers, using the concept of		snapes where the scale factor is known or can be found	
1 thousandth times the size	equivalent fractions	To solve problems involving the	known or can be found	
(multiply and divide by 10, 100 and		calculation of percentages and the	To solve problems involving	
1,000)	To multiply simple pairs of proper	use of percentages for comparison	unequal sharing and grouping using	
	fractions, writing the answer in its		knowledge of fractions and	
To round any whole number to a	simplest form	Converting Measures (1	multiples.	
required degree of accuracy		week)	multiples.	
To use negative numbers in	To divide proper fractions by whole	weekj		
context, and calculate intervals	numbers		Statistics (1 week)	
across 0		To use, read, write and convert		
	Decimals and	between standard units, converting	To interpret and construct pie	
Addition. Subtraction,	Percentages (2 weeks)	measurements of length, mass,	charts and line graphs and use	
Multiplication and	· ····································	volume and time from a smaller	these to solve problems	
	To associate a fraction with division	unit of measure to a larger unit, and		
Division (5 weeks)		vice versa, using decimal notation	To calculate and interpret the mean	
	and calculate decimal fraction	to up to 3 decimal places	as an average	
To solve addition and subtraction	equivalents for a simple fraction.		-	
multi-step problems in contexts,	To recall and use equivalences	To convert between miles and		
deciding which operations and	between simple fractions, decimals	kilometres (5 miles = 8Km or 1 mile		
methods to use and why	and percentages, including in	= 1.6 km)		
	different contexts.			
To identify common factors,	unierent contexts.	To calculate, estimate and compare		
common multiples and prime	We must be a set of the second set of the	volume of cubes and cuboids using		
numbers	To multiply one-digit numbers with	•		
	up to 2 decimal places by whole	standard units, including cubic		
Understand that 2 numbers can be	numbers	centimetres (cm ³) and cubic metres		
related additively or		(m ³), and extending to other units.		
multiplicatively, and quantify				

additive and multiplicative	To use written division methods in	To calculate the area of	
relationships (multiplicative	cases where the answer has up to 2	parallelograms and triangles	
relationships restricted to	decimal places		
multiplication by a whole number).			
To multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication To divide numbers up to 4 digits by	To solve problems involving the calculation of percentages and the use of percentages for comparison	Shape (3 weeks) To recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles.	

The top section is dedicated to fluency. Areas in blue are mental elements of number to be driven, green indicate written areas of calculation. Areas in bold and italics are key indicators as stated in the RTPC non-statutory guidance document (July 2020). The below section is the key progression of teaching. Key areas of learning indicated in yellow with subsequent objectives.

Teaching and Learning Expectations:

- Mathematics will be taught five times a week: as a session each day or two sessions within a mathematics morning/afternoon
- When a mathematics morning is employed, an element of English will be given some time to ensure skills are continually driven and vice versa should an English morning take place.
- All children are able to access Mathematics
- All children have access to appropriate manipulatives and pictorial images
- Opportunities for children to develop fluency, reasoning and problem-solving skills within each lesson
- Teachers to use skills curriculum maps to ensure comprehensive and effective coverage
- All lessons will have four set slides for whole class teaching as a minimum: fluency, learning objective with vocabulary, metacognition modelling and reasoning.
- Class blogs and social media to include examples of Mathematics

Working Walls/Displays:

All classes to display current Mathematics learning on working wall. They must include: key vocabulary, WAGOLL (What a good one looks like), children's work, reasoning sentence starters

- Corridor display (main building) showcasing effective mathematics across the school
- Hall display with leader-board for times tables rock stars and actions for times tables
- Connected mathematics learning display new build, encouraging learners to link between concepts of mathematics
- In classrooms, numbers/number lines are present in the classroom to support learners
- In classrooms, fixed display posters of new/hard to remember learning (see below) which remain throughout a term/for the year. E.g. parallel and perpendicular may be there all year to help pupils retain this knowledge

Fixed Displays:

Nursery	Reception	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Maths books	Maths books Number of the	Numbers to 100 caterpillars	Numbers to 100 (10s	Roman Numeral Date	Roman Numeral Date	Roman Numeral Date	Roman Numeral Date
Day Number-line to	Day Number-line to	Numbers to 20 representations	frames) Place Value to 100	X Tables to 12x12	X Tables to 12x12	X Tables to 12x12	Place Value to 10,000,000 with 3DP
20	30	Number formation	X Tables	Place Value to 1,000 with 2	Place Value to 10,000 with 2	Place Value to 1,000,000	FDP
2D Shapes	2D and 3D Shapes	Daily number	2,3,4,5,10	DP	DP	2D and 3D	Equivalents
Subitising	Subitising	Sunflowers	Daily Number	2D and 3D shape	2D and 3D shape	shape properties	Formulas for areas/perimeter
Birthday Balloons	Birthday Balloons	vocabulary Twinkl	Sunflowers vocabulary	properties 2D and 3D	properties 2D and 3D	FDP Equivalents	Volume – how to calculate
	Dailoons	reasoning stems	Twinkl reasoning	Shape Names	Shape Names	Counting in	Measures
		X Tables	stems	Counting in	Negative numbers past	250s, 500s, 1000s	conversions
		2,5,10	Written and mental	50s/100s to 1000	0	Clock Times	Missing angles
		2D and 3D Shape Names	strategies Vertices, faces	Clock Times 24Hr to	Counting ins 25s, 50s, 100s	24Hr to nearest minute	Square/cube number sequences
			and edges/sides	nearest minute	Clock Times 24Hr to	Area and perimeter of	Prime Numbers
			2D and 3D	Parallel, perpendicular,	nearest minute	rectangles/ Perimeter of	(Factor bugs)
			Shape Names	vertical, horizontal, diagonal	Parallel, perpendicular, vertical,	rectilinear shapes	KS2 Reasoning Stems
				Equivalent	horizontal, diagonal	Obtuse/Acute /reflex angles	
				fractions (small denominators)	Obtuse/Acute	Square/cube	
				Right angles and right	/reflex angles Fraction and	number sequences	
				angles in turn	decimal equivalence for	Prime Numbers	
				KS2 Reasoning	quarter, half and three	(Factor bugs)	
				Stems	quarters Lines of	Regular and Irregular	
					symmetry	Polygons KS2	
					KS2 Reasoning Stems	Reasoning Stems	
Not discretely on Could be anywhe environment.							

Classroom Resources:

Classroom resources are available for all learners to access. Children are taught how to use them and are guided towards what resources might be useful; children can also select and choose independently during lessons. Resources link with our school calculation policy.

Below is a list of what resources are permanently found in classrooms to support learners' understanding.

EYFS (Resources to be added as taught) – Maths resource area/resources chosen for purpose

Various objects to count Cubes Numicon Dice Tens Frames Number Fans Balance Scales Number tiles Part-Part-Whole Cuisenaire Rods – not stored in classroom

KS1 Classroom Resources – Available for independent use at desks for learners

Base 10 (Diennes)

Place Value Counters – Up to 100

Cubes

Numicon

Dice

Tens Frames

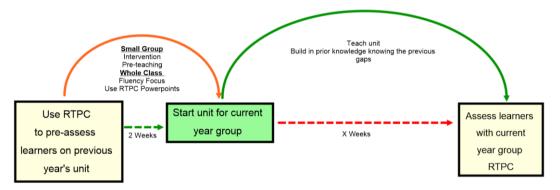
Cuisenaire Rods – not stored in classroom

KS2 Classroom Resources – Available for independent access at resource area

Base 10 – including 1000s Place Value Counters – Up to 1,000,000

Cubes

Dice


Cuisenaire Rods - not stored in classroom

Monitoring/Assessment:

 Key Stage 1 to assess children with Ready to Progress Criteria (RTPC) this format (ongoing) – at the beginning of the unit with the previous year's criteria. Gaps will be addressed during the unit and then the children will be assessed on their current year groups criteria.

Date	<u>Area</u>	Specific Area	<u>Children</u>	Impact after	Further
	of Mathematics	Of Mathematics	Requiring	Intervention and	Action?
			Intervention	<u>Unit Taught</u>	
e.g. 14.10.20	Multiplication and	Long	Jonathan	All children	Work with
	Division	Multiplication	Gordon	demonstrated	Gordon a
			Samantha	solid	few more
				understanding	times in
				following the	class when
				intervention. All	multiplying
				children accessed	– just to
				and achieved end	ensure
				of unit	retention.
				assessment.	

• Key Stage 2 to assess with this same format however they will place intervention pre-unit (see below.) KS1 do not complete the pre-unit work to avoid confusion with current area of study.

- Summative assessment: PUMA tests, Twinkl tests, end of unit assessments to identify children who are WTS, EXS and GDS
- Formative assessment techniques within lessons
- Pupil Conferencing
- Learning Walk/Lesson Observations
- Work scrutiny and book looks.
- Progress review meetings