(Waxt sandy

Calculation Policy to Support a Mastery Mathematics Curriculum
(Adapted from White Rose Maths Hub)

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram as } \\ \text { shown above to } \\ \text { move into the } \\ \text { abstract. } \end{array} \end{aligned}$

Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10 . $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make	Add together three groups of objects. Draw a	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

$\left.\begin{array}{|l|l|l|l|l|}\hline & \begin{array}{l}10 \text { with } 2 \text { of the digits (if possible) } \\ \text { then add on the third digit. }\end{array} & & \\ \hline \begin{array}{l}\text { Column } \\ \text { method- no } \\ \text { regrouping }\end{array} & \begin{array}{l}24+15= \\ \text { Add together the ones first then add } \\ \text { the tens. Use the Base } 10 \text { blocks first } \\ \text { before moving onto place value } \\ \text { counters. }\end{array} & \begin{array}{l}\text { After practically using the base } 10 \text { blocks and place } \\ \text { value counters, children can draw the counters to } \\ \text { help them to solve additions. }\end{array} & \text { Calculations }\end{array}\right\}$

Subtraction

Objective and Strategies	Concrete	Pictorial	Abstract \dagger
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. $6-2=4$	Cross out drawn objects to show what has been taken away. $15-3=$ \square	$\begin{aligned} & 18-3=15 \\ & 8-2=6 \end{aligned}$
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count back wards in ones. 13-4 Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Make 10	$14-9=$ Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .	Start at 13. Take away 3 to reach 10 . Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	$16-8=$ How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	 Use Base 10 to make the bigger number then take the smaller number away. Show how you partition numbers to subtract.		$\begin{gathered} 47-24=23 \\ -40+7 \\ -\frac{20+4}{20+3} \\ \hline \end{gathered}$ This will lead to a clear written column sub tra ctio n.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters	Draw the counters onto a place value grid and show what you have taken away by crossing the counters out as well as clearly showing the exchanges you	Chil dren

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	Partition a number and then double each part before recombining it back together.
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25, 30

Repeated addition	objects to add equal groups.	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 $5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Show the link with arrays to first introduce the grid method.

4 rows of 10
4 rows of 3

Move on to using Base 10 to move towards a more compact method.

4 rows of 13

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0 + 3 5 = 2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

	 Then you have your answer.		
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods. $\begin{aligned} & 8 \times 59 \\ & 8 \times 60-8 \\ & 8 \times 6=48 \\ & 8 \times 60=480 \\ & 480-8=472 \end{aligned}$	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. $\begin{aligned} & 32 \\ & \times \quad 24 \\ & \hline(4 \times 2) \\ & 120(4 \times 30) \\ & 40(20 \times 2) \\ & \cline { 1 - 1 } 760(20 \times 30) \end{aligned}$

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quantities. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. $96 \div 3=32$	Use a number line to show jumps in groups. The number of jumps equals the number of groups. Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $\begin{gathered} 20 \div 5=? \\ 5 \times ?=20 \end{gathered}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

| Division within |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| arrays |

	We look how much in 1 group so the answer is 14.		

