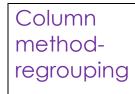
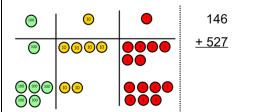


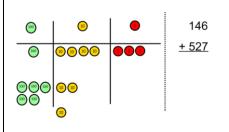
Calculation Policy to Support a Mastery Mathematics Curriculum


(Adapted from White Rose Maths Hub)

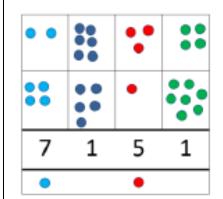
<u>Addition</u>


Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use cubes to add two numbers together as a group or in a bar.	y y y y y y y y y y y y y y y y y y y	4 + 3 = 7 $10 = 6 + 4$ 3 Use the part-part whole diagram as shown above to move into the abstract.

Starting at the bigger number and	9.000000000 ()()))	12 + 5 = 17	5 + 12 = 17
counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.		Place the larger number
		Start at the larger number on the number line and count on in ones or in one jump to find the answer.	in your head and count on the smaller number to find your answer.
	Decerces	Use pictures or a	7 + 4= 11
Regrouping to make 10.	6 + 5 = 11	number line. Regroup or partition the smaller number to make 10.	If I am at seven, how many more do I need to make 10. How many more do I add on now?
	Start with the bigger number and use the smaller number to make 10.	9 + 5 = 14 $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$ $+1$	
Adding three single digits	4 + 7 + 6= 17 Put 4 and 6 together to make 10. Add on 7.		(4 + 7 + 6) = 10 + 7 = 17
			Combine the two numbers that make 10 and then add on the remainder.
	Following on from making 10, make	Add together three groups of objects. Draw a picture to recombine the groups to make 10.	


	10 with 2 of the digi then add on the th			
Column method- no regrouping	24 + 15= Add together the one the tens. Use the Base before moving onto p counters.	e 10 blocks first	 the base 10 blocks and place en can draw the counters to ditions.	<u>Calculations</u> 21 + 42 = 21
		0 • 0 • •		+ <u>42</u>
		© 0000		

Make both numbers on a place value grid.


Add up the units and exchange 10 ones for one 10.

Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added.

This can also be done with Base 10 to help children clearly see that 10 ones equal 1 ten and 10 tens equal 100.

As children move on to decimals, money and decimal place value counters can be used to support learning. Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding.

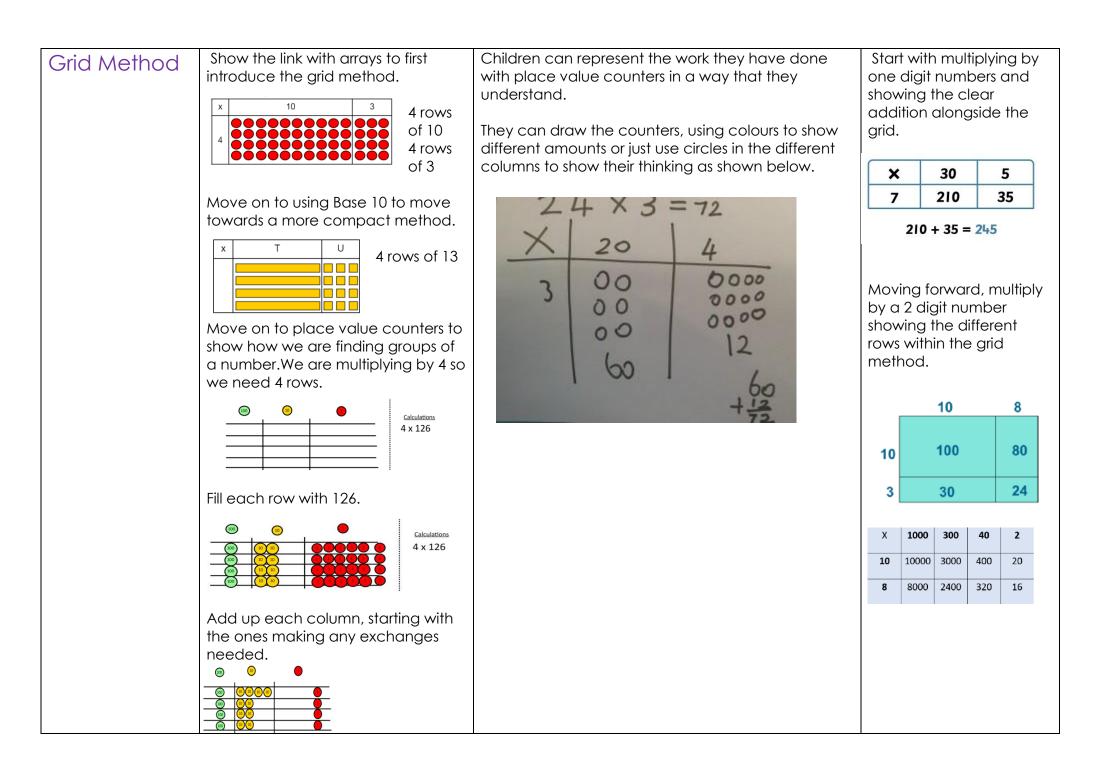
Start by partitioning the numbers before moving on to clearly show the exchange below the addition.)		
$\frac{20}{40}$	+ + +	-	5 <u>8</u> 13	=	73	3			
nui plc Mc	Idro ove od cin mb ice one 72.	en or uc nal er s c y c 8	•	dif	cir fe	+ e s nc	ıl nt.	<u>5</u> 1 ne	
12	54.0 27.4 1	_	+	£ £ £	2 3 1	3 7 1		5 5 1	9 5 4
-	2 5 + 9 2	3 9 9 1 3 1		3 0 7 3 5 2		6 8 7 <u>0</u> 1	1 0 0 1		

<u>Subtraction</u>

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones	Use physical objects, counters, cubes etc to show how objects can be taken away. 6-2=4	Cross out drawn objects to show what has been taken away. $ \begin{array}{c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & &$	18 -3= 15 8 - 2 = 6
Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count back wards in ones. 13 – 4 Use counters and move them away from the group as you take them	Count back on a number line or number track 9 10 11 12 13 14 15 Start at the bigger number and count back the smaller number showing the jumps on the number line. -1 -1 -1	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.
	away counting backwards as you go.	34 35 36 37 47 57 This can progress all the way to counting back using	

		two 2 digit numbers.	
Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	 the difference between 2 numbers. the difference between 2 numbers. 	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.

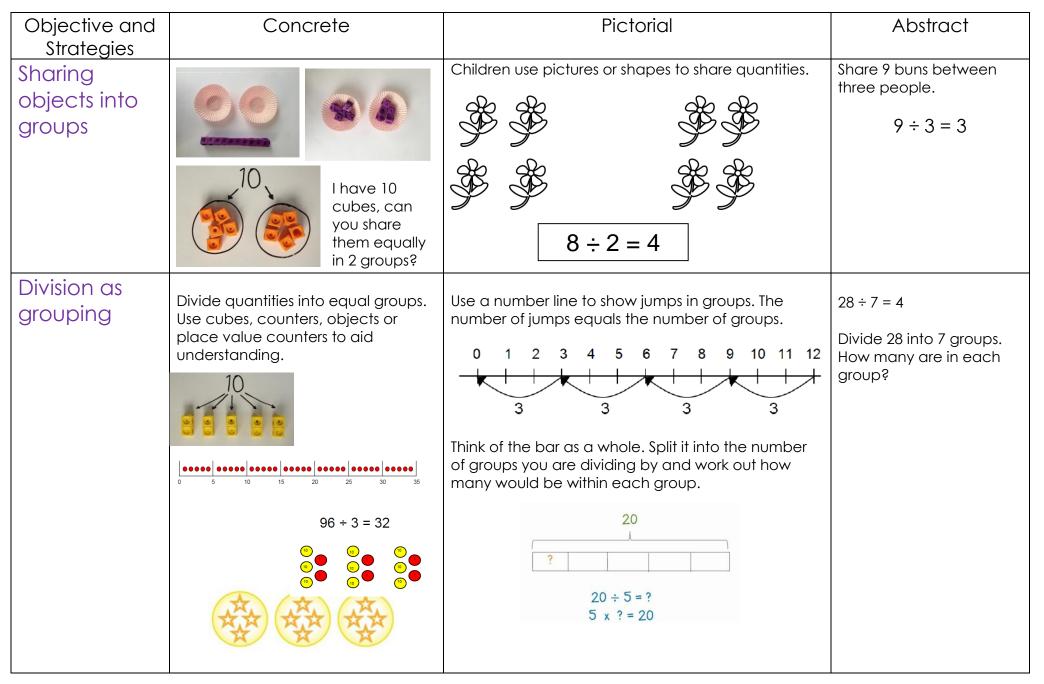
Make 10	14-9= Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9.	13 - 7 = 6 3 4 5 1 2 3 4 5 6 7 5 5 10 11 12 13 14 15 16 17 18 19 20 Start at 13. Take away 3 to reach 10. Then take away the remaining 4 so you have taken away 7 altogether. You have reached your answer.	16 – 8= How many do we take off to reach the next 10? How many do we have left to take off?
Column method without regrouping	Show how you partition numbers to subtract. Again make the larger number first.	Calculations Draw the Base 10 or place value counters alongside the written calculation to help to show working. Calculations 176 - 64 = 176 - 64 112	$47 - 24 = 23$ $-\frac{40}{20} + 7$ $-\frac{20}{4} + 4$ $-\frac{20}{4} + 3$ This will lead to a clear written column 32 -12 20 sub tra ctio n.
Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters	HundredsTensOnes1000000000000000000000000000000000000	$836-254=582$ $\frac{360}{360} + \frac{1}{360} + \frac{1}{6}$ $728-582=146$ $\frac{728-582=146}{582} + \frac{1}{28}$ $\frac{582}{146}$ Children


100	(1)	•	<u>Calculations</u>	make.	can start their formal written method by
(100) (100)	0 0 0		234 <u>- 88</u>		partitioning the number into clear place value
8 from one of Now I Now I away 8 exchai on	4 easily my tens of my tens of my mode mode mode mge one	e tens, can I asily? I need hundred fo	calculations 234 - 88 ess. calculations 234 - 88 ess.	When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Into clear place value columns. Moving forward the children use a more compact method. This will lead to an understanding of subtracting any number including decimals. $\frac{5 12 1}{2 6 3 0}$ $- \frac{2 6 5}{2 3 6 5}$
		e away eigh subtraction	t tens and		

(B)		<u>Calculations</u> 12734 - 88
Show childre method links alongside yo the numbers	en how the con to the written i our working. Cro when exchang we write our ne	method oss out ging and

Multiplication

Objective and Strategies	Concrete	Pictorial	Abstract
Doubling	Use practical activities to show how to double a number. double 4 is 8 4×2=8	Draw pictures to show how to double a number. Double 4 is 8	16 10 10 10 10 10 10 10 10 10 10
Counting in multiples	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples.	back together. Count in multiples of a number aloud. Write sequences with multiples of numbers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30


Repeated addition	Image: state stat	There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? There are 3 plates. Each plate has 2 star biscuits on. How many biscuits are there? 2 add 2 add 2 equals 6 5 + 5 + 5 = 15 5 + 5 + 5 = 15	Write addition sentences to describe objects and pictures.
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences and reinforce repeated addition. 5 + 5 + 5 = 15 3 + 3 + 3 + 3 + 3 = 15 $5 \times 3 = 15$ $3 \times 5 = 15$


	Then you have your answer.		
Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns.
	64×3=192	$8 \times 59 = 8 \times 60 - 8 = 8 \times 60 - 8 = 8 \times 60 = 480 = 480 = 480 = 480 = 480 = 480 = 480 = 472$ $10 \text{ Litres or 10000 mL}$	If it helps, children can write out what they are solving next to their answer.
	It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which they note below.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 32 \\ x \underline{24} \\ 8 \\ 120 \\ 40 \\ (20 \times 2) \\ \underline{600} \\ 768 \end{array}$

This $2 \ 1 \ 0$ moves to $2 \ 4 \ 0 \ 0$ the more $\frac{4}{4} \ 2 \ 0 \ 0$ $\frac{4}{4} \ 6 \ 6 \ 2$ $2 \ 3 \ 1$ $1 \ 3 \ 4 \ 2$ $\frac{x \ 1 \ 8}{1 \ 3 \ 4 \ 2 \ 0}$ $1 \ 0 \ 7 \ 3 \ 6$ $2 \ 4 \ 1 \ 5 \ 6$ compact method.

<u>Division</u>

Division within arrays	Link division to multiplicatio n by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Find the inverse of multiplication and division sentences by creating four linking number sentences. Find the inverse of multiplication and division sentences by creating four linking number sentences. Tx 4 = 28 $4 \times 7 = 28$ $28 \div 7 = 4$ $28 \div 4 = 7$
Division with a remainder	14 ÷ 3 = Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a 0 4 8 12 $13remainder.Draw dots and group them to divide an amountand clearly show a remainder.\boxed{\bigcirc} \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcircremainder 2$

We look how much in 1 group so the answer is 14.	